Digital Image Processing

Image Enhancement - Filtering

Derivative

• Derivative is defined as a rate of change.

Discrete Derivative Finite Distance

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$
 Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$
 Central difference

Example

$$f(x) = 10 \quad 15 \quad 10 \quad 10 \quad 25 \quad 20 \quad 20 \quad 20$$

$$f'(x) = 0 \quad 5 \quad -5 \quad 0 \quad 15 \quad -5 \quad 0 \quad 0$$

$$f''(x) = 0 \quad 5 \quad -10 \quad 5 \quad 15 \quad 20 \quad 5 \quad 0$$

Derivative Masks

Backward difference[-1 1]Forward difference[1 -1]Central difference[-1 0 1]

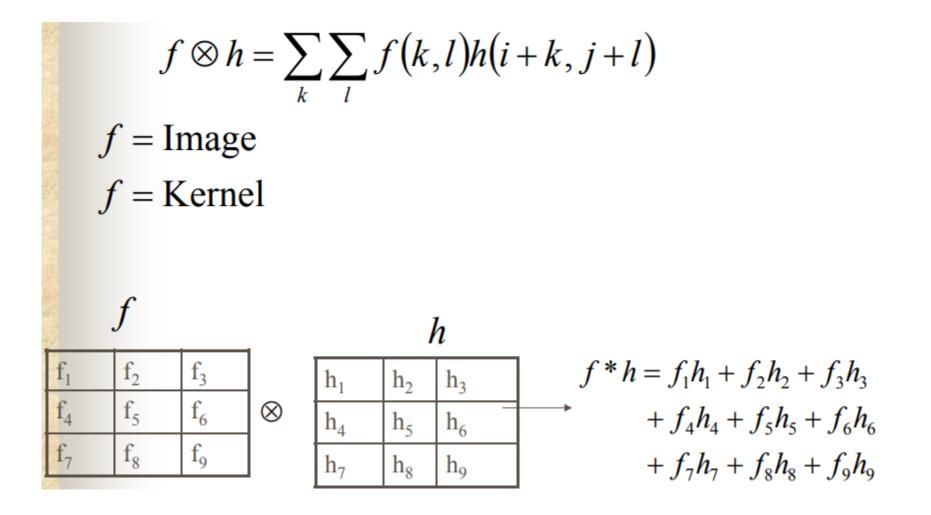
Derivatives in 2-dimension

f(x,y)Given function $\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$ Gradient vector $\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$ Gradient magnitude $\theta = \tan^{-1} \frac{f_x}{f}$ Gradient direction

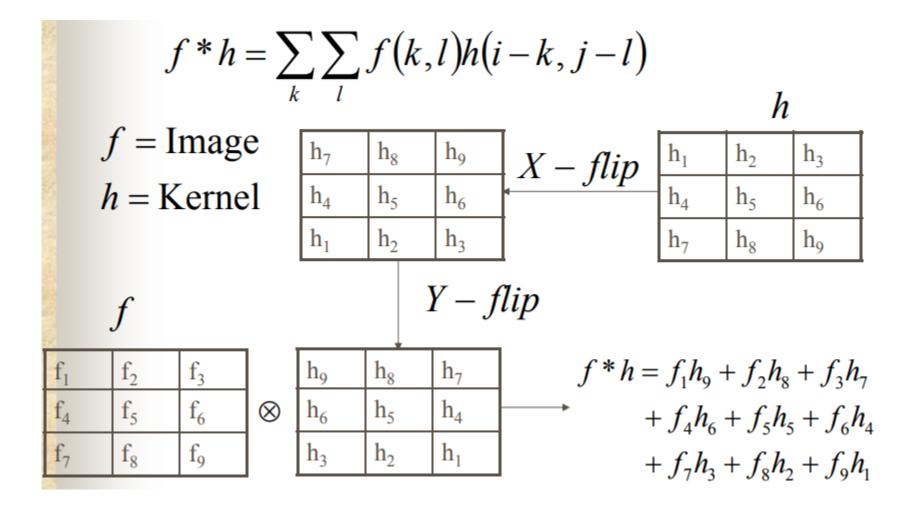
Derivatives of Images

Derivatives of Images

Correlation



Convolution



Averages

• Mean

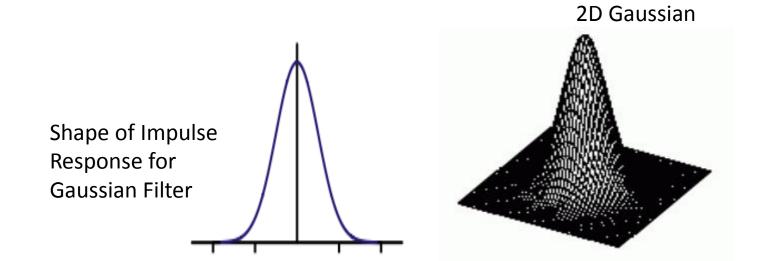
$$I = \frac{I_1 + I_2 + \dots + I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

• Weighted mean

$$I = \frac{w_1 I_1 + w_2 I_2 + \ldots + w_n I_n}{n} = \frac{\sum_{i=1}^n w_i I_i}{n}$$

Gaussian Filtering

 The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' images and remove detail and noise. In this sense it is similar to the mean filter, but it uses a different kernel that represents the shape of a Gaussian (`bell-shaped') hump.

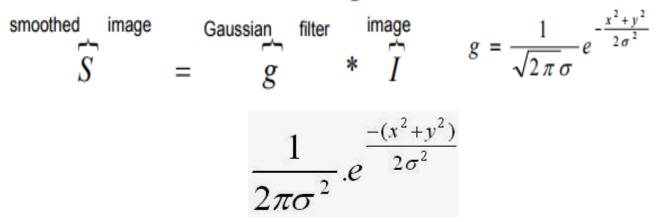


Scale of Gaussian

- As sigma increases, more pixels are involved in averaging
- As sigma increase, image is more blurred
- As sigma increase, noise is more effectively suppressed

Gaussian Filter

Gaussian smoothing



Consider sigma = 0.6 and kernel size = 3x3

$$\frac{1}{2\pi\sigma^2} = \frac{1}{2\times3.14\times0.6\times0.6} = \frac{1}{2.2619}$$

Kernel width; X= 3, Kernel Height; Y = 3

$$X = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}_{\text{and}} Y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$e^{\frac{-(x^2+y^2)}{2\sigma^2}} = \begin{bmatrix} -2.7778 & -1.3889 & -2.7778 \\ -1.3889 & 0 & -1.3889 \\ -2.7778 & -1.3889 & -2.7778 \end{bmatrix}$$

The Gaussian kernel's center part (Here 0.4421) has the highest value and intensity of other pixels decrease as the distance from the center part increases.

The Gaussian kernel takes the form as:

0.0275	0.1102	0.0275
0.1102	0.4421	0.1102
0.0275	0.1102	0.0275

Convolve the kernel with the region in the given image

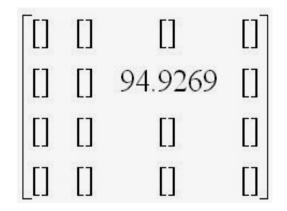
72	68	88	159
69	66	87	162
70	66	83	161
70	66	78	154

Performing Convolution:

68	88	159]	0.0275	0.1102	0.0275		1.8692	9.7009	4.3706
66	87	162 -	• 0.1102	0.4421	0.1102	Ð	7.2757	38.4624	4.3706 17.8585
66	83	161	0.0275	0.1102	0.0275		1.8142	9.1497	4.4256

On convolution of the local region and the Gaussian kernel gives the highest intensity value to the center part of the local region **(38.4624)** and the remaining pixels have less intensity as the distance from the center increases.

Sum up the result and store it in the current pixel location (Intensity = 94.9269) of the image.



Performing calculations for each pixel, the resultant image is:

The end